Machine Learning- From Basics to Advanced – Udemy

(10 customer reviews)




What you’ll learn

  • Learn how to use NumPy, to do fast mathematical calculations in machine learning.
  • Learn what is Machine Learning and Data Wrangling in machine learning.
  • Learn how to use scikit-learn for data-preprocessing in machine learning.
  • Learn different model selection and feature selections techniques in machine learning.
  • Learn about cluster analysis and anomaly detection in machine learning.
  • Learn about SVMs for classification, regression and outliers detection in machine learning.

If you are looking to start your career in Machine learning then this is the course for you.

This is a course designed in such a way that you will learn all the concepts of machine learning right from basic to advanced levels.

This course has 5 parts as given below:

  1. Introduction & Data Wrangling in machine learning

  2. Linear Models, Trees & Preprocessing in machine learning

  3. Model Evaluation, Feature Selection & Pipelining in machine learning

  4. Bayes, Nearest Neighbors & Clustering in machine learning

  5. SVM, Anomalies, Imbalanced Classes, Ensemble Methods in machine learning

For the code explained in each lecture, you can find a GitHub link in the resources section.

Who’s teaching you in this course?

I am Professional Trainer and consultant for Languages C, C++, Python, Java, Scala, Big Data Technologies – PySpark, Spark using Scala Machine Learning & Deep Learning- sci-kit-learn, TensorFlow, TFLearn, Keras, h2o and delivered at corporates like GE, SCIO Health Analytics, Impetus, IBM Bangalore & Hyderabad, Redbus, Schnider, JP Morgan – Singapore & HongKong, CISCO, Flipkart, MindTree, DataGenic, CTS – Chennai, HappiestMinds, Mphasis, Hexaware, Kabbage. I have shared my knowledge that will guide you to understand the holistic approach towards ML.

Machine learning is the fuel we need to power robots, alongside AI. With Machine Learning, we can power programs that can be easily updated and modified to adapt to new environments and tasks to get things done quickly and efficiently.

Here are a few reasons for you to pursue a career in Machine Learning:
1) Machine learning is a skill of the future – Despite the exponential growth in Machine Learning, the field faces skill shortage. If you can meet the demands of large companies by gaining expertise in Machine Learning, you will have a secure career in a technology that is on the rise.
2) Work on real challenges – Businesses in this digital age face a lot of issues that Machine learning promises to solve. As a Machine Learning Engineer, you will work on real-life challenges and develop solutions that have a deep impact on how businesses and people thrive. Needless to say, a job that allows you to work and solve real-world struggles gives high satisfaction.
3) Learn and grow – Since Machine Learning is on the boom, by entering into the field early on, you can witness trends firsthand and keep on increasing your relevance in the marketplace, thus augmenting your value to your employer.
4) An exponential career graph – All said and done, Machine learning is still in its nascent stage. And as the technology matures and advances, you will have the experience and expertise to follow an upward career graph and approach your ideal employers.
5) Build a lucrative career– The average salary of a Machine Learning engineer is one of the top reasons why Machine Learning seems a lucrative career to a lot of us. Since the industry is on the rise, this figure can be expected to grow further as the years pass by.
6) Side-step into data science – Machine learning skills help you expand avenues in your career. Machine Learning skills can endow you with two hats- the other of a data scientist. Become a hot resource by gaining expertise in both fields simultaneously and embark on an exciting journey filled with challenges, opportunities, and knowledge.

Machine learning is happening right now. So, you want to have an early bird advantage of toying with solutions and technologies that support it. This way, when the time comes, you will find your skills in much higher demand and will be able to secure a career path that’s always on the rise.

Enroll Now!! See You in Class.

Happy learning
Team Edyoda

Who this course is for:

  • Beginners who want to become a data scientist
  • Software developers who want to learn machine learning from scratch
  • Python developers who are interested to learn machine learning
  • Professionals who want to start their career in Machine Leaning

Course content

  • Introduction to Machine Learning & Data Wrangling
  • Linear Models, Trees & Preprocessing
  • Model Evaluation, Feature Selection & Pipelining
  • Bayes, Nearest Neighbours & Clustering
  • SVM, Anomalies, Imbalanced Classes, Ensemble Methods

10 reviews for Machine Learning- From Basics to Advanced – Udemy

  1. Donny Phan

    Super practical. Lessons are catered towards anyone looking to find work in this industry. It felt very comprehensive and gave me a broad understanding of the programming spectrum

  2. Madhav raj Verma

    Thanks for your great effort. i am fully satisfied with this course the way you teach and your explanation are very clear ,The content you provide in your course no one can do this at this price.

  3. Sachin Gupta

    I really didn’t want to leave a low rating as Angela is a great teacher. The 1st half of this course was terrific. The 2nd half was terrible. Under the justification of “teaching students how to figure things out on their own”, pretty much all videos and all explanations were dropped. You were just told what to do, given links to documentation and told to figure it out on your own. I understand doing that to some degree, but to revert to that entirely for nearly half the content barely makes this a course. It’s just a list of things for you to learn, then you’re left on your own to learn them. The 2nd half was so bad, especially the data science component, that I didn’t bother finishing the course.

  4. Vincent Beaudet

    Amazing 40 days course.
    Angela is a great teacher.
    The other 60 days are all about web developement, interacting with web pages, on your own with little to no explanations. I did not expect that at all. I wanted to learn more about software and scripting.
    This left me disappointed , confused and i started to doubt myself. Not a fun experience after the amount of effort i’v put in this course.

    Exercices format and explanations for the first 40 days were worth it tho.

  5. Ben K

    Not just an introduction to python, but really helps you learn fundamental aspects of python and coding in general. Some parts may require some knowledge on the subject (data science comes to mind) and there is quite some web development in the course. So, a few areas were not completely to my liking (I would have liked to see it done differently), but this course deserves the 5 stars in my opinion.

  6. Omid Alikhel

    I found the method a bit difficult when a code is written and then changed back to something different, with no enough explanation of how something happened and where it came from or a step by step explanation of why something is happening, i have no doubt in the instructors talent, but we are beginners!

  7. Devang Jain

    The course is not updated and most of the solution codes don’t work and there are no video solutions towards the end

  8. Szymon Kozak

    I think that the course tutor is really good in giving right information to learn at the right time. Thanks to this fact, my understanding of coding in python after 29 days of learning is above my expectations.

  9. Begoña Ruiz Diaz

    Ha sido la mejor elección que podría haber hecho.

  10. Vaibhav Sachdeva

    I want to thank Angela for making such an amazing course. It really helped me explore more things with python.

Add a review

Your email address will not be published.