Sale!

R Programming Hands-on Specialization for Data Science (Lv1) – Udemy

(10 customer reviews)

$15

Description

What you’ll learn

  • Setup and Use Development Environment for R
  • Install and Use Packages in R
  • Learn and use Atomic Data Types in R
  • Learn and apply advanced explicit/Implicit Coercioning in R
  • Learn multiple approaches to create vectors in R
  • Understand nuances and implications in Vector Coercions
  • Understand Vector indexing principles in R
  • Understand and leverage Vectors’ flatness property
  • Understand Vector Labels and Attributes and their practical use-cases
  • Learn Matrices and multiple approaches for creation
  • Learn how Matrices Dimension Property works
  • Learn advanced techniques for Matrices Indexing
  • Learn Matrices Operations and Important Functions
  • Learn the amazing use-cases of Lists
  • Learn to leverage Lists’ Recursive Nature
  • Learn multiple ways to create Lists (including from other data structures)
  • Learn critical nuances in Lists Indexing, Labels and Lists Properties
  • Learn multiple approaches to create Data Frames (including from other data structures)
  • Learn Data Frames sub-setting (beginner to advanced)
  • Learn how to impute missing values in Data Frames for efficient Data Analysis
  • Learn R Control Structures (Conditional statements and loops)
  • Learn to create and use R Functions
  • Understand Web Scraping Process
  • Learn R’s Apply family of functions for advanced data manipulation
  • Learn Multiple ways to perform Web Scraping in R
  • Learn how to perform Data Munging, Cleansing and Transformation in R
  • Learn HTML and Document Object Model in the context of Web Scraping
  • Learn XPath Query Language for Web Scraping
  • Learn RSelenium setup and usage for advanced Web Scraping
  • Learn Regular Expression Functions in R for advanced analysis
  • Learn advanced Data Frames techniques for efficient data analysis
  • Learn how to perform statistical analysis and visualisation to derive insights in R

Show moreShow less

R is considered as lingua franca of Data Science. Candidates with expertise in R programming language are in exceedingly high demand and paid lucratively in Data Science. IEEE has repeatedly ranked R as one of the top and most popular Programming Languages. Almost every Data Science and Machine Learning job posted globally mentions the requirement for R language proficiency. All the top ranked universities like MIT have included R in their respective Data Science courses curriculum. 

With its growing community of users in Open Source space, R allows you to productively work on complex Data Analysis and Data Science projects to acquire, transform/cleanse, analyse, model and visualise data to support informed decision making. But there’s one catch: R has quite a steep learning curve! 

How’s this course different from so many other courses?

Many of the available training courses on R programming don’t cover it its entirety. To be proficient in R for Data Science requires thorough understanding of R programming constructs, data structures and none of the available courses cover them with the comprehensiveness and depth that each topic deserves. Many courses dive straight into Machine Learning algorithms and advanced stuff without thoroughly comprehending the R programming constructs. Such approaches to teach R have a lot of drawbacks and that’s where many Data Scientists struggle with in their professional careers.

Also, the real value in learning R lies in learning from professionals who are experienced, proficient and are still working in Industry on huge projects; a trait which is missing in 90% of the training courses available on Udemy and other platforms.

This is what makes this course stand-out from the rest. This course has been designed to address these and many other fallacies and uniquely teaches R in a way that you won’t find anywhere else. Taught by me, an experienced Data Scientist currently working in Deloitte (World’s largest consultancy firm) in Australia and has worked on a number of Data Science projects in multiple niches like Retail, Web, Telecommunication and web-sector. I have over 5 years of diverse experience of working in my own start-ups (related to Data Science and Networking), BPO and digital media consultancy firms, and in academia’s Data Science Research Labs. Its a rare combination of exposure that you will hardly find in any other instructor. You will be leveraging my valuable experience to learn and specialize R. 

What you’re going to learn in this course?

The course will start from the very basics of introducing Data Science, importance of R and then will gradually build your concepts. In the first segment, we’ll start from setting up R development environment, R Data types, Data Structures (the building blocks of R scripts), Control Structures and Functions. 

The second segment comprises of applying your learned skills on developing industry-grade Data Science Application. You will be introduced to the mind-set and thought-process of working on Data Science Projects and Application development. The project will then focus on developing automated and robust Web Scraping bot in R. You will get the amazing opportunities to discover what multiple approaches are available and how to assess alternatives while making design decisions (something that Data Scientists do everyday). You will also be exposed to web technologies like HTML, Document Object Model, XPath, RSelenium in the context of web scraping, that will take your data analysis skills to the next level. The course will walk you through the step by step process of scraping real-life and live data from a classifieds website to analyse real-estate trends in Australia. This will involve acquiring, cleansing, munging and analyzing data using R statistical and visualisation capabilities.

Each and every topic will be thoroughly explained with real-life hands-on examples, exercises along with disseminating implications, nuances, challenges and best-practices based on my years of experience. 

What you will gain from this course will be incomparable to what’s currently available out there as you will be leveraging my growing experience and exposure in Data Science. This course will position you to not only apply for Data Science jobs but will also enable you to use R for more challenging industry-grade projects/problems and ultimately it will super-charge your career.

So take the decision and enrol in this course and lets work together to make you specialize in R Programming like never before!

Who this course is for:

  • Anyone who wants to get started or advance further in Data Science
  • Anyone who wants to develop expertise in R programming based on best-practices
  • Anyone who wants to learn how to use R for real-life challenging Data Science projects and applications

Course content

  • Introduction
  • R Fundamentals
  • R Data Types
  • R Data Structure – Vectors
  • R Data Structure – Matrices
  • R Data Structure – Lists
  • R Data Structure – Data Frames
  • R Control Structures
  • Data Science Application in R – Automated Web Scraping Bot

10 reviews for R Programming Hands-on Specialization for Data Science (Lv1) – Udemy

  1. Donny Phan

    Super practical. Lessons are catered towards anyone looking to find work in this industry. It felt very comprehensive and gave me a broad understanding of the programming spectrum

  2. Madhav raj Verma

    Thanks for your great effort. i am fully satisfied with this course the way you teach and your explanation are very clear ,The content you provide in your course no one can do this at this price.

  3. Sachin Gupta

    I really didn’t want to leave a low rating as Angela is a great teacher. The 1st half of this course was terrific. The 2nd half was terrible. Under the justification of “teaching students how to figure things out on their own”, pretty much all videos and all explanations were dropped. You were just told what to do, given links to documentation and told to figure it out on your own. I understand doing that to some degree, but to revert to that entirely for nearly half the content barely makes this a course. It’s just a list of things for you to learn, then you’re left on your own to learn them. The 2nd half was so bad, especially the data science component, that I didn’t bother finishing the course.

  4. Vincent Beaudet

    Amazing 40 days course.
    Angela is a great teacher.
    The other 60 days are all about web developement, interacting with web pages, on your own with little to no explanations. I did not expect that at all. I wanted to learn more about software and scripting.
    This left me disappointed , confused and i started to doubt myself. Not a fun experience after the amount of effort i’v put in this course.

    Exercices format and explanations for the first 40 days were worth it tho.

  5. Ben K

    Not just an introduction to python, but really helps you learn fundamental aspects of python and coding in general. Some parts may require some knowledge on the subject (data science comes to mind) and there is quite some web development in the course. So, a few areas were not completely to my liking (I would have liked to see it done differently), but this course deserves the 5 stars in my opinion.

  6. Omid Alikhel

    I found the method a bit difficult when a code is written and then changed back to something different, with no enough explanation of how something happened and where it came from or a step by step explanation of why something is happening, i have no doubt in the instructors talent, but we are beginners!

  7. Devang Jain

    The course is not updated and most of the solution codes don’t work and there are no video solutions towards the end

  8. Szymon Kozak

    I think that the course tutor is really good in giving right information to learn at the right time. Thanks to this fact, my understanding of coding in python after 29 days of learning is above my expectations.

  9. Begoña Ruiz Diaz

    Ha sido la mejor elección que podría haber hecho.

  10. Vaibhav Sachdeva

    I want to thank Angela for making such an amazing course. It really helped me explore more things with python.

Add a review

Your email address will not be published.